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Abstract 
Many paint programs include a lasso editing tool that 
allows the user to capture an irregular portion of a two-
dimensional figure.  However, no corresponding tool is 
known to exist for three-dimensional editing.  This paper 
describes a lasso tool, based on a convex hull algorithm, 
that has been simulated using the SensAble™ PHANTOM™ 
haptic device.  The PHANTOM™ device is employed as a 
three-dimensional mouse to select a set of non-planar 
voxels, that is, three-dimensional pixels.  The algorithm 
uses the selected voxels to define a convex hull.  Once the 
voxels within the convex hull have been identified, they 
can be deleted, copied, or modified. 
 
1 Introduction 
This project addressed the problem of selecting a set of 
voxels (three-dimensional pixels) in a three-dimensional 
model for editing.  The tools available for two-dimensional 
editing are rather flexible; many paint programs allow the 
mouse to sketch the boundary of a region, either freehand 
or using line segments to form a polygon.  The user does 
not have to enclose the region in a circle, ellipse or square 
but may select a shape that is irregular.  We sought to 
generalize the two dimensional idea of a lasso enclosing a 
irregular polygon to a lasso for three-dimensional sets of 
voxels. 
Current packages on the market allow three-dimensional 
data to be edited in several ways including what are known 
as: the cookie-cutter (or extrusion) approach, the melon 
baller approach and the two-dimensional slicing approach 
[1].  The cookie-cutter approach allows an arbitrary shape 
to be drawn on a plane to enclose an area, then extends the 
shape downward orthogonal to the plane so that it selects a 
volume much like a cookie cutter presses through a large 
quantity of dough.  The melon baller method uses a regular 
shape, such as sphere, cube, or rectangular prism to carve 
out sections of the three-dimensional space by using that 
shape.  This allows greater control over the volume 

selected than the previous method, but it still yields a 
regular shaped region.  In a third approach, two-
dimensional slicing, a two-dimensional projection of the 
three-dimensional data set is edited repeatedly.  The data 
set may be rotated to observe the data from different 
viewpoints, but the mouse is still editing in two 
dimensions. 
The tool we created and simulated using the PHANTOM™ 
haptics device makes possible the freehand editing of a 
three-dimensional data set.  Our prototype allows the user 
to specify a data set, containing points with (x,y,z) 
coordinates, which is then rendered as voxels in a three-
dimensional haptic scene.  To construct a convex hull, the 
haptics device is first used to select a set of three-
dimensional voxels.  When at least four non-planar voxels 
have been chosen, the program will construct a convex hull 
that encloses all points within the boundary of an irregular 
convex polyhedron defined by those voxels. 
 
2 Mathematical Approach 
To create a lasso tool that allows for the arbitrary selection 
of points and the enclosure of irregular three-dimensional 
volumes, we first explored the geometry of the problem.  
Just as the two-dimensional lasso tool uses a polygon to 
enclose the area to be edited, a three-dimensional lasso 
must define a polyhedron.  A polyhedron is a region of 
space whose boundary is composed of flat polygon faces, 
any pair of which are either disjoint or meeting at edges 
and vertices. 
It should be noted that we here are discussing and 
constructing a convex polyhedron.  A set S of points is 
defined as convex if x ∈ S and y ∈ S implies that the line 
segment xy ⊆ S.  A polyhedron that is constructed from the 
user-selected points is called a convex hull of the set.  The 
following example may help visualize the concept of a 
convex hull.  In a two-dimensional plane, the convex hull is 
the shape a string assumes when anchored to a nail at the 
lowest point with respect to y and wrapped 
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counterclockwise around nails pounded into the plane at 
each point.  In three dimensions, the boundary of a convex 
hull is the shape taken by plastic wrap stretched tightly 
around all the points. More formally a definition of convex 
hull of a set S is the intersection of all convex sets that 
contain S.   
Many algorithms exist for constructing both two and three-
dimensional convex hulls. Graham’s Algorithm [1], the 
fastest method for constructing a convex hull in two 
dimensions, has no obvious generalization to three 
dimensions.  Among the best-known three-dimensional 
algorithms are Gift Wrapping (Chand & Kapur), Divide 
and Conquer (Preparata & Hong) and Incremental 
Algorithm (Seidel & Kallay).  We chose to implement the 
Incremental Algorithm outlined by Joseph O’Rourke in the 
second edition of his, Computational Geometry in C [2]. 
In two dimensions the basic method of the Incremental 
Algorithm is to add points one at a time, constructing the 
hull of the first k points at each step and using that hull to 
incorporate the next point. 

Algorithm: INCREMENTAL ALGORITHM 
Let H2 ← conv{p0,p1,p2}. 
For k = 3 to n-1 do 

Hk ←conv{Hk-1∪ pk} 

The algorithm begins with a triangle and considers whether 
the next point is inside or outside the area enclosed by that 
triangle.  If the point is inside, then it is discarded; if it is 
outside, then the algorithm determines the two tangent lines 
from the new point to the triangle.  The algorithm continues 
in this manner until the convex hull is fully defined. 
This incremental algorithm, with time complexity of O(n2), 
can be generalized to three dimensions. 

Algorithm: 3D INCREMENTAL ALGORITHM  
Initialize H3 to tetrahedron (p0,p1,p2,p3). 
for i = 4, …, n-1 do 
for each face f of H i-1 do 
 Compute volume of tetrahedron determined by f and pi. 
 Mark f visible iff volume < 0. 
 if no faces are visible 
  then 
   Discard pi (it is inside H i-1). 
  else 
   for each visible border edge e of H i-1 do 
    Construct cone face determined by e and pi. 
   for each visible face f do 
    Delete f. 
   Update Hi. 

The overall structure of the three-dimensional incremental 
algorithm is identical to that of the two-dimensional 
version.  From a set of identified points, the algorithm 
chooses four non-planar points from which the initial hull 
is constructed.  At the ith iteration, the algorithm computes 
the hull-in-progress by adding a new point.  This action 
yields two possibilities: (1) if the new point is inside the 
existing hull, it is discarded; (2) if it is outside, the 
algorithm constructs a cone face determined by the new 
point and each border edge visible from that point.  The 
process of defining the convex hull on the basis of a single 
new point p is visualized in Figures 1 - 3. 

 
Figure 1: Convex hull Q and point p outside the hull 

 
Figure 2:  The striped faces are interior and marked for 
deletion when the hull is extended to include point p. 

 
Figure 3:  The hull after point p and the new faces have 
been added. 
 



3 Implementation of Convex Hull Algorithm 
To simplify the data structures used, the algorithm assumes 
that every face of the surface of the polytope (convex 
polyhedron) is a triangle.  Three primary data types are 
required to define a convex hull, vertices, edges, and faces. 
The computer program that implements the algorithm 
consists of four basic sections: read, create initial polytope, 
construct the hull, and print.  First the vertices are read into 
an array.  Next, an initial polytope for the incremental 
algorithm is created. It is a double-sided triangle, a 
polyhedron with three vertices and two faces that are 
identical except for the order of their vertices.  To construct 
this figure, three noncollinear points are found, and after 
marking them as processed the double-sided triangle is 
built as the first hull Q. It is now necessary to find a fourth 
nonplanar point p to form a tetrahedron.  For each point p it 
must be determined if p is inside or outside Q.  To 
accomplish this, one must determine for every face f of Q if 
the face f is visible from point p.   The face f is visible from 
p iff it lies in the positive halfspace determined by the plane 
containing f.  The positive side is determined by the 
counterclockwise orientation of f.  If no face is visible from 
p, then it must lie inside the hull, and it is marked for 
deletion.  If p is outside Q, then the hull is transformed by 
finding the tangent planes that bound a cone of triangle 
faces with the apex at point p and the base edges of Q 
(Figure 2).  The portion of the polytope visible from p 
forms a connected region of the surface of the existing hull 
as indicated by the striped faces in Figure 2.  The interior 
faces of the region must now be deleted and the cone 
connected to the boundary.  To determine the edges of the 
hull, those edges adjacent to two visible faces are marked 
interior and marked for deletion; those edges with one 
adjacent visible face are identified as on the border of the 
visible region.  Once the edges of the border are identified, 
then for every edge on the border a new triangular face can 
be constructed using that edge and the point p.   At this 
point, the convex hull is almost complete.  All that remains 
is to “clean up” the hull by deleting hidden faces and edges 
and making sure the vertex, edge and face lists are properly 
linked. 
 
4 Construction of the Prototype 
Our effort to model the algorithm began by building a 
visualization program using OpenGL. The program we 
devised first reads in a data set consisting of (x,y,z,r,g,b) 
giving position and color information and then creates a 
voxel for each point in an n x n x n space.  The voxels are 
cubes that can be opaque or transparent.  Once the scene 
has been rendered, it can be rotated clockwise or 
counterclockwise in the x, y, and z directions around a 
fixed point.  Given a set of three-dimensional non-planar 
coordinates (a subset of the original data set) the program 
determines the convex hull defined by those points.  In our 
program we identified the hull by changing the color of the 
points that constituted it.  When operational the program 

demonstrated that the convex hull algorithm could be 
implemented in a graphics program. 
Wishing additionally to implement the model into a three-
dimensional touch environment, we developed a related 
program using the GHOST® API to incorporate haptics.  
The program we developed for use on the PHANTOM™ 
haptics device uses “voxel world” coordinates, where the 
position of the voxel is (x, y, z) and x, y, and z are all 
integers.  As a trial experiment, we created a 3 x 3 x 3 grid 
of spheres to represent the voxel space.  The spheres were 
large enough to be felt, but separated by sufficient space to 
permit movement of the haptic cursor within the grid.  We 
made use of the PHANTOM™ haptics device as a three-
dimensional selection device.  Using the stylus, we selected 
certain spheres that represented the set of points to define 
our convex hull.  The algorithm then determined the 
interior points of the hull and we identified those voxels by 
changing their color. 
 
5 Future Work 
One application of a tool such as we devised is to facilitate 
the exploration of three-dimensional scientific or abstract 
data sets using haptics.  At the present we hope to 
incorporate this work into a tool kit that uses haptic 
feedback to explore Light Detection and Ranging (LIDAR) 
data.  The LIDAR tool kit will enable the user to be 
immersed in and interact with a point cloud of data and the 
3-D lasso editing tool will allow for selection of points for 
removal or coloring. 
 
SensAble Technologies, Inc. and GHOST are registered 
trademarks, and SensAble and PHANTOM are trademarks, 
of SensAble Technologies, Inc. 
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